Aiaa 99–1467 Low Order Aerodynamic Models for Aeroelastic Control of Turbomachines

نویسنده

  • K. E. Willcox
چکیده

A reduced order aerodynamic model is developed for aeroelastic analysis of turbomachines. The proper orthogonal decompostion technique is used to obtain the modal basis vectors of this model. Two-dimensional frequency domain solutions are used to obtain the basis vectors eeciently, however the model itself is developed in the time domain and is cast in state-space form. The number of states of the model is less than ten per blade passage, making it appropriate for control applications. The aerodynamic model is coupled with a simple structural model that has two degrees of freedom for each blade. Results are presented for unsteady inviscid ow through a single stage rotor that moves in both pitch and plunge. The technique is applicable to viscous and three-dimensional problems as well as multi-stage problems with inlet and exit disturbance ows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REDUCED-ORDER AERODYNAMIC MODELS FOR AEROELASTIC CONTROL OF TURBOMACHINES by KAREN

Aeroelasticity is a critical consideration in the design of gas turbine engines, both for stability and forced response. Current aeroelastic models cannot provide highdelity aerodynamics in a form suitable for design or control applications. In this thesis low-order, highdelity aerodynamic models are developed using systematic model order reduction from computational uid dynamic (CFD) methods. ...

متن کامل

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

Development of a Discrete-time Aerodynamic Model for Cfd- Based Aeroelastic Analysis

System identification is used to develop an accurate and computationally efficient discrete-time aerodynamic model of a three-dimensional, unsteady CFD solution. This aerodynamic model is then used in place of the unsteady CFD solution in a coupled aeroelastic analysis resulting in a substantial savings in computational time. The methodology has the advantage of producing an explicit mathematic...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Hypersonic Aerothermoelasticity with Application to Reusable Launch Vehicles

The hypersonic aeroelastic and aerothermoelastic problem of a double-wedge airfoil typical cross-section is studied using three different unsteady aerodynamic loads: (1) third-order piston theory, (2) Euler aerodynamics, and (3) Navier-Stokes aerodynamics. Computational aeroelastic response results are used to obtain frequency and damping characteristics, and compared with those from piston the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999